The absorption of sulfur dioxide in simulated flue gas by using liquid-containing membrane was investigated.The process of sulfur dioxide desorption from the absorbent of citrate solution was explored.The influence of the gas-phase,and the liquid-phase on absorption efficiency of sulfur dioxide and the influence of ultrasonic frequency,ultrasonic power and stirring speed on desorption efficiency of sulfur dioxide were examined.The results indicate that the absorption efficiency decreases with increasing flow velocity and sulfur dioxide content in gas-phase,and can be improved by increasing the concentration and the pH value of citrate solution.It is concluded that lower ultrasonic frequency results in a better degassing efficiency.The using of ultrasound in desorbing sulfur dioxide from citrate solution improves the desorbing efficiency in the some conditions,without changing the essence of chemical reaction.
Effects of shear rates on average cluster sizes (ACSs) and cluster size distributions (CSDs) in uni- and bi-systems of partly charged superfine nickel particles were investigated by Brownian dynamics, and clustering properties in these systems were compared with those in non-polar systems. The results show that the ACSs in bi-polar systems are larger than those in the non-polar systems. In uni-polar systems the behavior of clustering property differs: at the lower ionic concentration (10%), repulsive force is not strong enough to break clusters, but may greatly weaken them. The clusters are eventually cracked into smaller ones only when concentration of uni-polar charged particles is large enough. In this work, the ionic concentration is 20%. The relationship between ACS and shear rates follows power law in a exponent range of 0.176-0.276. This range is in a good agreement with the range of experimental data, but it is biased towards the lower limit slightly.