Platinum-based anticancer drugs, including cisplatin and its analogues, have played important roles in the clinical treatment of solid tumors over the past 38 years. However, poor selectivity, high toxicity and intrinsic or acquired drug resistance profoundly limit their application, which encourages the development of novel transition metal-based anticancer agents with different mechanisms of action. To this end, transition metal complexes that can simultaneously act on more than one target, termed as single-molecule multi-targeting complexes, have attracted increasing attention because of their enhanced efficacy and diminished chance of drug resistance. In this review, we systematically discuss the recent progress in the development of platinum- and ruthenium-based anticancer agents, in particular the rational design of platinum and ruthenium complexes with multi-targeting features.
The complicated, highly dynamic and diverse nature of biosystems brings great challenges to the specific analysis of molecular processes of interest. Nature provides antibodies for the specific recognition of antigens, which is a straight-forward way for targeted analysis. However, there are still limitations during the practical applications due to the big size of the antibodies, which accelerate the discovery of small molecular probes. Peptides built from various optional building blocks and easily achieved by chemical synthetic approaches with predictable conformations, are versatile and can act as tailor-made targeting vehicles.In this mini review, we summarize the recent developments in the discovery of novel peptides for bioanalytical and biomedical applications. Progresses in peptide-library design and selection strategies are presented. Recent achievements in the peptide-guided detection, imaging and disease treatment are also focused.