Two kinds of polyfluorenes 19earing two lateral pyrene terminated alkyl chains and two alkyl chains per repeating unit were synthesized by Suzuki polycondensation and used to disperse single-walled carbon nanotubes (SWCNT) in organic solvents. Stable polymer-SWCNT complex can be formed via the multivalent π-π stacking in".eraction of the lateral pyrene functional groups and the polyfluorene backbone with the outer surface of carbon nanotubes; meanwhile the lateral alkyl chains can impart good solubility to the complex. As expected, polyfluorenes bearing lateral pyrene functional groups and octyl chains exhibited much higher ,zarbon nanotube solubility in common organic solvents than the corresponding polyfluorenes bearing only octyl chains. Photophysical studies indicated that the formation ofpalymer-SWCNT complex can effectively quench the fluorescence of polyfluorenes.
Fluorene-based polymers containing perfluorooctyl moieties were designed and synthesized. The high electronegativity and F…H--C interactions are present in the fluorinated polymers, which slightly induce blue-shift of UV-Vis absorption in film. The fluoropolymer films prepared from fluorinated solvents show lager contact angles than those prepared in non-fluorinated solvents.
6,7-Dialkoxy-2,3-diphenylquinoxaline based narrow band gap conjugated polymers, poly[2,7-(9-octyl-9H- carbazole)-alt-5,5-(5,8-di-2-thinenyl-(6,7-dialkoxy-2,3-diphenylquinoxaline))] (PCDTQ) and poly[2,7-(9,9-dioctylfluorene)- alt-5,5-(5,8-di-2-thinenyl-(6,7-dialkoxy-2,3-diphenylquinoxaline))] (PFDTQ), have been synthesized by Suzuki polycondensation. Their optical, electrochemical, transport and photovoltaic properties have been investigated in detail. Hole mobilities of PCDTQ and PFDTQ films spin coated from 1,2-dichlorobenzene (DCB) solutions are 1.0 X 10-4 and 4.1 X 10-4 cm2 V-1 s-l, respectively. Polymer solar cells were fabricated with the as-synthesized polymers as the donor and PC61BM and PC7 IBM as the acceptor. Devices based on PCDTQ:PC71BM (1:3) and PFDTQ:PC7 IBM (1:3) fabricated from DCB solutions demonstrated a power conversion efficiency (PCE) of 2.5% with a Voc of 0.95 V and a PCE of 2.5% with a Voof 0.98 V, respectively, indicating they are promising donor materials.
The molecular materials with structures of luminescent core and peripheral carrier groups (e.g. carbazoles), have exhibited high-performance in organic light-emitting diodes (OLEDs). Present work is to understand the basic process of electronic and energy exchange between the peripheral functional groups and the central core through quantum chemical analysis. As an example, 4,7-bis(9,9-bis(6-(9H-carbazol-9-yl)hexyl)-9H-fluoren-2-yl)benzo[c]- [1,2,5]thiadiazole (TCBzC) is investigated in regards to optoelectronic properties using density functional theory (DFT). The results suggest that the forbidden transition from peripheral carbazole to the central chromophore core makes for separated electrical and optical properties, and high performance electroluminescence (EL) is mainly at- tributed to the energy-transfer from carbazoles to the fluorene derivative core.