This paper is concerned with certain multilinear commutators of BMO functions and multilinear singular integral operators with non-smooth kernels. By the sharp maximal functions estimates, the weighted norm inequalities for this kind of commutators are established.
Though the theory of one-parameter Triebel-Lizorkin and Besov spaces has been very well developed in the past decades, the multi-parameter counterpart of such a theory is still absent. The main purpose of this paper is to develop a theory of multi-parameter Triebel-Lizorkin and Besov spaces using the discrete Littlewood-Paley-Stein analysis in the setting of implicit multi-parameter structure. It is motivated by the recent work of Han and Lu in which they established a satisfactory theory of multi-parameter Littlewood-Paley-Stein analysis and Hardy spaces associated with the flag singular integral operators studied by Muller-Ricci-Stein and Nagel-Ricci-Stein. We also prove the boundedness of flag singular integral operators on Triebel-Lizorkin space and Besov space. Our methods here can be applied to develop easily the theory of multi-parameter Triebel-Lizorkin and Besov spaces in the pure product setting.
In this paper, the author studies a class of non-standard commutators with higher order remainders for oscillatory singular integral operators with phases more general than polynomials. For 1 〈 p 〈 ∞, the L^p-boundedness of such operators are obtained provided that their kernels belong to the spaces L^q(s^n-1) for some q 〉 1.
In this paper, the authors study the mapping properties of singular integrals on product domains with kernels in L(log+L)ε(Sm-1 × Sn-1) (ε = 1 or 2) supported by hyper-surfaces. The Lp bounds for such singular integral operators as well as the related Marcinkiewicz integral operators are established, provided that the lower dimensional maximal function is bounded on Lq(R3) for all q 1. The condition on the integral kernels is known to be optimal.
In this paper, the authors establish the LP-mapping properties of certain classes of Marcinkiewicz integral operators along surfaces with rough kernels. The results in this paper essentially extend as well as improve previously known results.