A chemical deposition was supposed to be an effwient method in preparation of nano-sized Sn/ MWNTs. The nanoconmposites of MWNTs and Sn/ MWNTs were both used as anodes of lithium ion battery. The special capacities and coulomb efficiencies of Snl MWNTs were studied by means of electrochemical methods. The coating of Sn on MWNTs observed by TEM was amorphous and nano-sized. The reversible capacity of Sn/ MWNTs , which was much larger than that of MWNTs , was 824 mAh/ g in the 1 st charge and discharge cycle. The coulomb efficiency of Sn/ MWNTs in the 1 st cycle was increased by 16% compared with that of MWNTs. The additional Sn, which was 37wt% of total Sn/ MWNTs' weight, introduced the additional reversible lithiation capacity at least 250 mAh/ g in the 40 charge and discharge cycles. The dispersing degree of Sn on MWNTs was the main reason for the influence of the electrochemical perfomance of the Sn/ MWNTs . Sn/ MWNTs is proved to be a promising candidate as an anode of lithium ion battery.