An improved Gaussian mixture model (GMM)- based clustering method is proposed for the difficult case where the true distribution of data is against the assumed GMM. First, an improved model selection criterion, the completed likelihood minimum message length criterion, is derived. It can measure both the goodness-of-fit of the candidate GMM to the data and the goodness-of-partition of the data. Secondly, by utilizing the proposed criterion as the clustering objective function, an improved expectation- maximization (EM) algorithm is developed, which can avoid poor local optimal solutions compared to the standard EM algorithm for estimating the model parameters. The experimental results demonstrate that the proposed method can rectify the over-fitting tendency of representative GMM-based clustering approaches and can robustly provide more accurate clustering results.
This paper presents a new routing strategy by introducing a tunable parameter into the minimum information path routing strategy we proposed previously. It is found that network transmission capacity can be considerably enhanced by adjusting the parameter with various allocations of node capability for packet delivery. Moreover, the proposed routing strategy provides a traffic load distribution which can better match the allocation of node capability than that of traditional efficient routing strategies, leading to a network with improved transmission performance. This routing strategy, without deviating from the shortest-path routing strategy in the length of paths too much, produces improved performance indexes such as critical generating rate, average length of paths and average search information.
In this paper, three robust zero-watermark algorithms named Direct Current coefficient RElationship (DC-RE), CUmulant combined Singular Value Decomposition (CU-SVD), and CUmulant combined Singular Value Decomposition RElationship (CU-SVD-RE) are proposed. The algorithm DC-RE gets the feature vector from the relationship of DC coefficients between adjacent blocks, CU-SVD gets the feature vector from the singular value of third-order cumulants, while CU-SVD-RE combines the essence of the first two algorithms. Specially, CU-SVD-RE gets the feature vector from the relationship between singular values of third-order cumulants. Being a cross-over studying field of watermarking and cryptography, the zero-watermark algorithms are robust without modifying the carrier. Numerical simulation obviously shows that, under geometric attacks, the performance of CU-SVD-RE and DC-RE algorithm are better and all three proposed algorithms are robust to various attacks, such as median filter, salt and pepper noise, and Gaussian low-pass filter attacks.