We consider harmonic moments of branching processes in general random environments. For a sequence of square integrable random variables, we give some conditions such that there is a positive constant c that every variable in this sequence belong to Ac or A1c uniformly.
The concepts of bi-immigration birth and death density matrix in random environment and bi-immigration birth and death process in random environment are introduced. For any bi-immigration birth and death matrix in random environment Q(θ) with birth rate λ 〈 death rate μ, the following results are proved, (1) there is an unique q-process in random environment, P^-(θ*(0);t) = (p^-(θ^*(0);t,i,j),i,j ≥ 0), which is ergodic, that is, lim t→∞(θ^*(0);t,i,j) = π^-(θ^*(0);j) ≥0 does not depend on i ≥ 0 and ∑j≥0π (θ*(0);j) = 1, (2) there is a bi-immigration birth and death process in random enjvironment (X^* = {X^*,t ≥ 0},ε^* = {εt,t ∈ (-∞, ∞)}) with random transition matrix P^-(θ^* (0);t) such that X^* is a strictly stationary process.
This article is a continuation of[9].Based on the discussion of random Kolmogorov forward(backward)equations,for any given q-matrix in random environment, Q(θ)=(q(θ;x,y),x,y∈X),an infinite class of q-processes in random environments satisfying the random Kolmogorov forward(backward)equation is constructed.Moreover, under some conditions,all the q-processes in random environments satisfying the random Kolmogorov forward(backward)equation are constructed.
This article presents a statistic for testing the sphericity in a GMANOVA- MANOVA model with normal error. It is shown that the null distribution of this statistic is beta and its nonnull distribution is given in series form of beta distributions.
The concepts of Markov process in random environment, q-matrix in random environment, and q-process in random environment are introduced. The minimal q-process in random environment is constructed and the necessary and sufficient conditions for the uniqueness of q-process in random environment are given.