A novel technique of introducing gas bubble stirring during solidification was studied to prepare Al-Si semi-solid slurry. The microstructure evolution of the slurry during slow cooling process after stirring was investigated. The effects of the solidification rate on the microstructure of the semi-solid slurry were investigated under three different solidification conditions. The results show that fine non-dendritic slurry can be obtained using the gas bubble stirring method. Ripening and coarsening of primary Al grains are observed during the slow cooling process, and at last coarsened eutectic Si appears. Primary Al grains with different sizes and eutectic Si are obtained, corresponding to three different solidification rates.
The microstructure evolution and mechanical properties of Mg-15Gd-3Y alloy were investigated in the as-cast and heat treated conditions. The microstrucmre evolution from as-cast to cast-T4 states involved a-Mg solid solution+Mg5(Gd,Y) phase→a-Mg supersaturated solid solution+rare earths compound Mg3(Gdl.26,Y0.74)→a-Mg supersaturated solid solution+rare earths compound Mg3(Gd0.Tas,Y1.255). It showed that 480 ℃/4 h was the optimal solution treatment parameter. If the solution temperature was high or the holding time was long, such as 520 ℃/16 h, an overheating phenomenon would be induced, which had a detrimental effect on the mechanical properties. When ageing at 225 and 200℃, the alloy would exhibit a significant age-hardening response and great long-time-age-hardening potential, respectively. The best mechanical properties were obtained at the parameters of 480 ℃/4 h+225 ℃/16 h, with the UTS of 257.0 MPa and elongation of 3.8%.