Let E = E({nk},{ck}) be a fat uniform Cantor set. We prove that E is a minimally fat set for doubling measures if and only if (nkck)p = ∞ for all p < 1 and that E is a fairly fat set for doubling measures if and only if there are constants 0 < p < q < 1 such that (nkck)q < ∞ and (nkck)p = ∞. The classes of minimally thin uniform Cantor sets and of fairly thin uniform Cantor sets are also characterized.
In this paper, we construct a scattered Cantor set having the value 1/2 of log2/log3- dimensional Hausdorff measure. Combining a theorem of Lee and Baek, we can see the value 21 is the minimal Hausdorff measure of the scattered Cantor sets, and our result solves a conjecture of Lee and Baek.
Let E be a cookie-cutter set with dimH E =s. It is known that the Hausdorff s-measure and the packing s-measure of the set E are positive and finite. In this paper, we prove that for a gauge function g the set E has positive and finite Hausdorff g-measure if and only if 0 〈 liminft→0 g(t)/ts 〈 ∞. Also, we prove that for a doubling gauge function g the set E has positive and finite packing g-measure if and only if 0 〈 lim supt→0 g(t)/ts 〈 ∞.
Let X be an Ahlfors d-regular space and rn a d-regular measure on X. We prove that a measure μ on X is d-homogeneous if and only if μ is mutually absolutely continuous with respect to m and the derivative Dmμ(x) is an A1 weight. Also, we show by an example that every Ahlfors d-regular space carries a measure which is d-homogeneous but not d-regular.