In this paper, the dynamic stress field near crack tips in the functionally graded materials subjected to the harmonic anti-plane shear stress waves was investi- gated by means of the non-local theory. The traditional concepts of the non-local theory were extended to solve the fracture problem of functionally graded materials. To make the analysis tractable, it was assumed that the material properties vary exponentially with coordinate parallel to the crack. By use of the Fourier transform, the problem can be solved with the help of a pair of dual integral equations, in which the unknown variable was the displacement on the crack surfaces. To solve the dual integral equations, the displacement on the crack surfaces was expanded in a series of Jacobi polynomials. Unlike the classical elasticity solutions, it is found that no stress singularities are present at crack tips. The non-local elastic solutions yield a finite hoop stress at crack tips, thus allowing us to use the maximum stress as a fracture criterion. The magnitude of the finite dynamic stress field depends on the crack length, the parameter describing the functionally graded materials, the circular frequency of the incident waves and the lattice parameter of materials.
The behavior of a Mode-Ⅰ interface crack in piezoelectric materials was investigated under the assumptions that the effect of the crack surface overlapping very near the crack tips was negligible. By use of the Fourier transform, the problem can be solved with the help of two pairs of dual integral equations. To solve the dual integral equations, the jumps of the displacements across the crack surfaces were expanded in a series of Jacobi polynomials. It is found that the stress and the electric displacement singularities of the present interface crack solution are the same as ones of the ordinary crack in homogenous materials. The solution of the present paper can be returned to the exact solution when the upper half plane material is the same as the lower half plane material.
The dynamic behavior of two parallel symmetry cracks in magneto-electro-elastic composites under harmonic anti-plane shear waves is studied by Schmidt method. By using the Fourier transform, the problem can be solved with a pair of dual integral equations in which the unknown variable is the jumps of the displacements across the crack surfaces. To solve the dual integral equations, the jumps of the displacements across the crack surface were expanded in a series of Jacobi polynomials. The relations among the electric filed, the magnetic flux and the stress field were obtained. From the results, it can be obtained that the singular stresses in piezoelectric/piezomagnetic materials carry the same forms as those in a general elastic material for the dynamic anti-plane shear fracture problem. The shielding effect of two parallel cracks was also discussed.