By a method improving that of [1], the authors prove the existence of a non-trivial product of filtration, s + 6, in the stable homotopy groups of sphere, πt-6S, which is represented up to non-zero scalar by β^-s+2ho(hmbn-1 -hnbm-1) ∈ ExtA^s+6,t+s(Zp, Zp) in the Adams spectral sequence, where p ≥ 7, n ≥ m + 2 ≥ 5, q = 2(p- 1), 0 ≤ s 〈 p - 2, t= (s + 2 + (s + 2)p + p^m + p^n)q. The advantage of this method is to extend the range of s without much complicated argument as in [1].
In this paper, we introduce a four-filtrated version of the May spectral sequence (MSS), from which we study the general properties of the spectral sequence and give a collapse theorem. We also give an efficient method to detect generators of May E 1-term E 1 s,t,b,* for a given (s, t, b, *). As an application, we give a method to prove the non-triviality of some compositions of the known homotopy elements in the classical Adams spectral sequence (ASS).
Xiu Gui LIU Xiang Jun WANG School of Mathematical Sciences and LPMC,Nankai University,Tianjin 300071,P.R.China
Let A be the mod p Steenrod algebra and S be the sphere spectrum localized at an odd prime p. To determine the stable homotopy groups of spheres π*S is one of the central problems in homotopy theory. This paper constructs a new nontrivial family of homotopy elements in the stable homotopy groups of spheres πp^nq+2pq+q-3S which isof order p and is represented by kohn ∈ ExtA^3,P^nq+2pq+q(Zp,Zp) in the Adams spectral sequence, wherep 〉 5 is an odd prime, n ≥3 and q = 2(p-1). In the course of the proof, a new family of homotopy elements in πp^nq+(p+1)q-1V(1) which is represented by β*i'*i*(hn) ∈ ExtA^2,pnq+(p+1)q+1 (H^*V(1), Zp) in the Adams sequence is detected.