Expanded mixed finite element approximation of nonlinear reaction-diffusion equations is discussed. The equations considered here are used to model the hydrologic and bio-geochemical phenomena. To linearize the mixed-method equations, we use a two-grid method involving a small nonlinear system on a coarse gird of size H and a linear system on a fine grid of size h. Error estimates are derived which demonstrate that the error is O(△t + h k+1 + H 2k+2 d/2 ) (k ≥ 1), where k is the degree of the approximating space for the primary variable and d is the spatial dimension. The above estimates are useful for determining an appropriate H for the coarse grid problems.
For the section coupled system of multilayer dynamics of fluids in porous media, a parallel scheme modified by the characteristic finite difference fractional steps is proposed for a complete point set consisting of coarse and fine partitions. Some tech- niques, such as calculus of variations, energy method, twofold-quadratic interpolation of product type, multiplicative commutation law of difference operators, decomposition of high order difference operators, and prior estimates, are used in theoretical analysis. Optimal order estimates in 12 norm are derived to show accuracy of the second order approximation solutions. These methods have been used to simulate the problems of migration-accumulation of oil resources.
In this paper,the finite element approximation of a class of semilinear parabolic optimal control problems with pointwise control constraint is studied.We discretize the state and co-state variables by piecewise linear continuous functions,and the control variable is approximated by piecewise constant functions or piecewise linear discontinuous functions.Some a priori error estimates are derived for both the control and state approximations.The convergence orders are also obtained.