您的位置: 专家智库 > >

国家自然科学基金(60972087)

作品数:4 被引量:11H指数:2
相关作者:谭丞李晓敏徐立军吴煜婷张琦更多>>
相关机构:北京航空航天大学更多>>
发文基金:国家自然科学基金北京市自然科学基金教育部“新世纪优秀人才支持计划”更多>>
相关领域:自动化与计算机技术机械工程更多>>

文献类型

  • 4篇中文期刊文章

领域

  • 3篇自动化与计算...
  • 1篇机械工程

主题

  • 2篇特征值
  • 2篇主成分
  • 2篇主成分分析
  • 2篇煤种
  • 1篇神经网
  • 1篇神经网络
  • 1篇神经网络技术
  • 1篇PARTIC...
  • 1篇SIGHT
  • 1篇TEMPER...
  • 1篇COMBIN...
  • 1篇DISTRI...
  • 1篇FINITE...
  • 1篇INFLUE...
  • 1篇MEASUR...
  • 1篇LINE-O...

机构

  • 2篇北京航空航天...

作者

  • 2篇徐立军
  • 2篇李晓敏
  • 2篇谭丞
  • 1篇张琦
  • 1篇吴煜婷

传媒

  • 1篇机械工程学报
  • 1篇仪器仪表学报
  • 1篇Partic...
  • 1篇Instru...

年份

  • 1篇2014
  • 1篇2013
  • 2篇2010
4 条 记 录,以下是 1-4
排序方式:
一种基于联合概率密度判别器的新煤种在线辨识方法被引量:1
2010年
提出一种利用主成分分析和联合概率密度判别器进行新煤种在线辨识的方法。根据不同煤质的煤的燃烧火焰在初燃区的特征不同,利用光电传感器获得燃烧火焰初燃区的光辐射信号,提取信号在时域和频域内的特征值,经过主成分分析处理得到正交化的、维数压缩的特征值向量。针对几种已知的煤种,利用获得的正交化特征值向量数据,建立每一煤种的联合概率密度分布模型。利用基于该模型的判别器,可以进行新煤种的判别或已知燃煤种类的辨识。
谭丞李晓敏徐立军张琦
关键词:特征值主成分分析
基于联合概率密度判别器和神经网络技术的煤种辨识方法被引量:3
2010年
提出一种基于联合概率密度判别器和神经网络技术进行煤种在线辨识的方法。根据不同种类的煤燃烧时火焰的特征不同,利用三个光电传感器来获得燃烧火焰在红外、可见光和紫外三个谱段上的辐射信号,通过特征值提取得到火焰辐射信号在时域和频域内的特征值,经过主成分分析处理得到正交化的、维数压缩的特征值矢量。利用获得的正交化特征值矢量数据,建立每一已知煤种的联合概率密度判别器和神经网络模型。利用基于燃煤特征值分布的联合概率密度判别器可进行是否为新煤种的判别,非新煤种则利用神经网络模型辨识燃煤的种类。试验结果表明,在某电站锅炉所测试的四种煤的情况下,结合联合概率密度判别器和神经网络模型进行燃煤种类的辨识,20次测试的平均成功率为97.6%。
谭丞李晓敏徐立军吴煜婷
关键词:特征值主成分分析神经网络
Measurement of nonuniform temperature distribution by combining line-of-sight TDLAS with regularization methods被引量:6
2014年
Regularization methods were combined with line-of-sight tunable diode laser absorption spectroscopy(TDLAS)to measure nonuniform temperature distribution.Relying on measurements of 12 absorption transitions of water vapor from 1300 nm to 1350 nm,the temperature probability distribution of nonuniform temperature distribution,for which a parabolic temperature profile is selected as an example in this paper,was retrieved by making the use of regularization methods.To examine the effectiveness of regularization methods,truncated singular value decomposition(TSVD),Tikhonov regularization and a revised Tikhonov regularization method were implemented to retrieve the temperature probability distribution.The results derived by using the three regularization methods were compared with that by using constrained linear least-square fitting.The results show that regularization methods not only generate closer temperature probability distributions to the original,but also are less sensitive to measurement noise.Particularly,the revised Tikhonov regularization method generate solutions in better agreement with the original ones than those obtained by using TSVD and Tikhonov regularization methods.The results obtained in this work can enrich the temperature distribution information,which is expected to play a more important role in combustion diagnosis.
LIU ChangXU LijunCAO Zhang
关键词:TEMPERATURE
Particle size influence on effective permittivity of particle-gas mixture with particle clusters被引量:1
2013年
The influence of particle size on the effective permittivity of a particle-gas mixture in the presence of particle clusters was studied using numerical analysis involving the three-dimensional finite element method. The effective permittivity of the mixture was obtained by calculating the electrostatic energy generated in the computation domain, Numerical results show that for fixed volume fraction of particles in the mixture, the effective permittivity of the mixture increases with decreasing particle size, Static experiments were carried out by using a differential capacitance sensor with parallel plates. The variation of the effective permittivity with particle size is shown by experimental data to agree with the numerical results. The methodology described and the results obtained in this paper may be used to help modify the measurement of particles volume fraction in the presence of particle clusters when a capacitance sensor is used.
Lijun XuChang LiuZhang CaoXiaomin Li
共1页<1>
聚类工具0