ZnS nanostructures with different dimensions and structure-related properties were reviewed in this paper. The crystallization of nanostructures from 0D, 1D to 3D, as well as the heterogonous counterparts, was sum- marized in the aspect of zinc blende, wurtzite structure, and their combinations. Furthermore, the structure-related energy bands and the corresponding photoelectric properties of ZnS nanostructures were also focused, in which we made a brief summary of the co-relations between photoluminescence and crystallography, especially the defectrelated luminescence properties of ZnS nanocrystal.
High-tap density electrode materials are greatly desired for Li-ion batteries with high volumetric capacities to fulfill the growing demands of electric vehicles and portable smart devices. TiOz, which is one of the most attractive an- ode materials, is limited in their application for Li-ion batteries because of its low tap density (usually 〈1 gcm-3) and volumetric capacity. Herein, we report uniform mesoporous TiO2 submicrospheres with a tap density as high as 1.62 gcm-3 as a promising anode material. Even with a high mass load- ing of 24 mg cm-2, the TiO2 submicrospheres have impressive volumetric capacities that are more than double those of their counterparts. Moreover, they can be synthesized with -100% yield and within a reaction time of -6 h by optimizing the experimental conditions and formation mechanism, exhibiting potential for large-scale production for industrial applications. Other mesoporous anode materials, i.e., hightap density mesoporous Li4Ti5O12 submicrospheres, are fabricated using the generalized method. We believe that our work provides a significant reference for the industrial production of mesoporous materials for Li-ion batteries with a high volumetric performance.
Nanomagnetic CoPt truncated octahedral nanoparticles (TONPs) were successfully synthesised through a facile one-pot strategy. These single crystal CoPt TONPs with an average size of about 8 nm exhibit excellent electrocatalytic performance of both activity and stability for methanol oxidation reaction (MOR). The mass and specific activities of CoPt TONPs is 8 and 6 times higher than that of standard commercial Pt/C, respectively. After accelerated durability test (ADT), the loss of electrochemical surface area (ECSA) for CoPt TONPs is only 18.5%, which is significantly less than that of commercial Pt/C (68.2%), indicating that CoPt TONPs possess much better stability than commercial Pt/C in the prolonged operation. The Curie temperature of CoPt TONPs down to 8 nm is as high as 350 K with weak ferromagntism at room temperature (RT), which is greatly valuable for recycling in the eletrocatalytic applications.
Tianyu XiaJialong LiuShouguo WangChao WangYoung SunRongming Wang
It is the result of a systemic study about uniform hematite nanopallets with length of about 100 nm, width of about 30 nm, and thickness of less than 10 nm. The sample has superparamagnetic(SPM) properties above the blocking temperature of ~16 K. The temperature dependence of magnetization was well fitted by Bloch T^(3/2) law considering the dipolar interaction of the particles. The field dependence of magnetization was fitted with revised Langevin equation.The magnetization of the weak ferromagnetic(WF) canted spins contributes to the linear portion in the high field region;the surface uncompensated spins and the parasitic ferromagnetic moments due to the canted spins both contribute to the particle moments and the superparamagnetic behavior.