The low cycle fatigue (LCF) behavior of a high-strength structural steel was investigated in the strain rate range of 4×10^-6 -0.12 s^-1 (0. 001-3 Hz) under constant total strain (±1%) control. The cyclic stress response at all strain rates exhibited behavior of rapid softening in the early stage of fatigue life and subsequent saturation up to failure. It was found that the stress amplitude, the plastic strain amplitude, the plastic strain energy density and the fatigue life depend mainly on the strain rate. The strain rate of 0. 012 s-1 was found as a transition point where the LCF of the steel showed different behavior from low strain rate to high strain rate. The relationship between the time to failure and strain rate was expressed well by a power law relation. The fracture surfaces of the fatigue sam-ples were characterized by using a scanning electron microscope (SEM) and the fracture mechanisms were discussed in terms of time-dependent deformation of the steel.
LUO Yun-rongHUANG Chong-xiangTIAN Ren-huiWANG Qing-yuan
Energy-based models for predicting the low-cycle fatigue life of high-strength structural steels are presented. The models are based on energy dissipation during average of cycles, cycles to crack propagation and total cycles to failure. Plastic strain energy per cycle was determined and found as an important characteristic for initiation and propagation of fatigue cracks for high-strength structural steels. Fatigue strain-life curves were generated using plastic energy dissipation per cycle (loop area) and compared with the Coffin-Manson relation. Low cycle fatigue life was found similar from both methods. The material showed Masing-type behavior. The cyclic hysterisis energy per cycle was calculated from cyclic stress-strain parameters. The fracture surfaces of the fatigue samples were characterized by scanning electron microscope and the fracture mechanisms were discussed.
LUO Yun-rong1,2, HUANG Chong-xiang1, GUO Yi2, WANG Qing-yuan1 (1. College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan, China