以我国自主创新的CAPS(China area positioning system)导航定位系统为研究平台,提出了CAPS卫星信号模拟器的系统架构,给出了总体设计框图,对各模块的功能进行了划分和设计。针对CAPS导航系统的特点,开展了模拟器关键技术的研究,给出了相关参数的计算方法。利用已开发出的成型的CAPS模拟器进行测试,结果表明:本文的设计方法是可行的,该模拟器可以用于测试接收机的捕获、跟踪和定位性能等。
介绍将气压测高方法作为虚拟星座应用于基于通信卫星的中国区域定位系统(Chinese Area Positioning System,CAPS),以补充和改善三维定位的可用性.气压测高方法,是利用地球大气中气压随高度变化的关系,在测量大气压的情况下以获得该处的地平高度.困难在于,在不同地区和不同气象条件下,气压随高度的关系是变化的,因此需要获得该测高地区的参考高度上的实时气压值,才能获得较高的精度.将这种测高方法应用于卫星导航系统的最大困难在于,在卫星导航覆盖的广大地区内,如何获得参考高度上的实时气压值.介绍了解决这个难题的一种新方法,即通过卫星通信收集中国及周边1860个已知高度的气象台站的实时气压和温度值,并统一进行时间外推预报.为减少数据量,对数据进行分区和编码,然后通过CAPS系统的导航电文将这些信息传送给CAPS用户接收机.经过接收机的内插处理,获得该接收机位置附近的参考气压和参考温度,并结合接收机实测的气压和温度值,求得该点高度值.文中介绍了计算原理、计算公式、资料收集、编码、预报、内插方法、导航电文传送、误差情况和分析,同时对该方法的优点和不足进行了较详细的讨论.
This work describes the barometric altimetry as virtual constellation applied to the Chinese Area Positioning System (CAPS), which uses the transponders of communication satellites to transfer navigation messages to users. Barometric altimetry depends on the relationship of air pressure varying with altitude in the Earth’s atmosphere. Once the air pressure at a location is measured the site altitude can be found. This method is able to enhance and improve the availability of three-dimensional positioning. The difficulty is that the relation between barometric pressure and altitude is variable in different areas and under various weather conditions. Hence, in order to obtain higher accuracy, we need to acquire the real-time air pressure corresponding to an altimetric region’s reference height. On the other hand, the altimetry method will be applied to satellite navigation system, but the greatest difficulty lies in how to get the real-time air pressure value at the reference height in the broad areas overlaid by satellite navigation. We propose an innovational method to solve this problem. It is to collect the real-time air pressures and temperatures of the 1860 known-altitude weather observatories over China and around via satellite communication and to carry out time extrapolation forecast uniformly. To reduce data quantity, we first partition the data and encode them and then broadcast these information via navigation message to CAPS users’ receivers. Upon the interpolations being done in receivers, the reference air pressure and temperature at the receiver’s nearby place is derived. Lastly, combing with the receiver-observed real air pressure and temperature, the site’s altitude can be determined. The work is presented in the following aspects: the calculation principle, formulae, data collection, encoding, prediction, interpolation method, navigation message transmission together with errors causes and analyses. The advantages and shortcomings of the technique are discussed at the end.
AI GuoXiangSHENG PeiXuanDU JinLinZHENG YongGuangCAI XianDeWU HaiTaoHU YongHuiHUA YuLI XiaoHui
Proper signal structure is very important in the navigation, positioning, and time services of a satellite navigation system. In this paper, the carrier wave characteristics, ranging code functions, BOC modulation, navigation data rate, the error-correcting methods, and signal channel resource allocation are discussed in terms of the technical characteristics of the transforming satellite navigation system and the resources of communication satellites. The results show that dual-frequency of C band in the Chinese Area Positioning System (CAPS), compound ranging code, a combination of the coarse code and precise code, BOC modulation, separate-channel transmission of different users are compatible with the satellite navigation system at present. The experiments show that the current signal structure can meet the demand of CAPS.
In this paper, based on analyses of the Chinese Area Positioning System (CAPS) satellite (GEO satellite) resources and signal properties, the signal power at the port of the receiver antenna is estimated, and the implementation projects are presented for a switching band C to band L CAPS C/A code receiver integrated with GPS receiver suite and for a CAPS dual frequency P code receiver. A microstrip receiving antenna is designed with high sensitivity and wide beam orientation, the RF front end of the C/A code and P code receivers, and a processor is designed for the navigation baseband. A single frequency CAPS C/A code receiver and a CAPS dual frequency P code receiver are built at the same time. A software process flow is provided, and research on relatively key techniques is also conducted, such as signal searching, code loop and carrier loop algorithms, a height assistant algorithm, a dual frequency difference speed measurement technique, a speed measurement technique using a single frequency source with frequency assistance, and a CAPS time correcting algorithm, according to the design frame of the receiver hardware. Research results show that the static plane positioning accuracy of the CAPS C/A code receiver is 20.5-24.6 m, height accuracy is 1.2-12.8 m, speed measurement accuracy is 0.13-0.3 m/s, dynamic plane positioning accuracy is 24.4 m, height accuracy is 3.0 m, and speed measurement accuracy is 0.24 m/s. In the case of C/A code, the timing accuracy is 200 ns, and it is also shown that the positioning accuracy of the CAPS precise code receiver (1σ ) is 5 m from south to north, and 0.8 m from east to west. Finally, research on positioning accuracy is also conducted.
It is a long dream to realize the communication and navigation functionality in a satellite system in the world. This paper introduces how to establish the system, a positioning system based on communication satellites called Chinese Area Positioning System (CAPS). Instead of the typical navigation satellites, the communication satellites are configured firstly to transfer navigation signals from ground stations, and can be used to obtain service of the positioning, velocity and time, and to achieve the function of navigation and positioning. Some key technique issues should be first solved; they include the accuracy position determination and orbit prediction of the communication satellites, the measur- ing and calculation of transfer time of the signals, the carrier frequency drift in communication satellite signal transfer, how to improve the geometrical configuration of the constellation in the system, and the integration of navigation & communication. Several innovative methods are developed to make the new system have full functions of navigation and communication. Based on the development of crucial techniques and methods, the CAPS demonstration system has been designed and developed. Four communication satellites in the geosynchronous orbit (GEO) located at 87.5°E, 110.5°E, 134°E, 142°E and barometric altimetry are used in the CAPS system. The GEO satellites located at 134°E and 142°E are decommissioned GEO (DGEO) satellites. C-band is used as the navigation band. Dual frequency at C1=4143.15 MHz and C2=3826.02 MHz as well as dual codes with standard code (CA code and precision code (P code)) are adopted. The ground segment consists of five ground stations; the master station is in Lintong, Xi’an. The ground stations take a lot of responsibilities, including monitor and management of the operation of all system components, determination of the satellite position and prediction of the satellite orbit, accomplishment of the virtual atomic clock measurement, transmission and receiving navigation sign