In this paper, the lattice-Bohzmann method is used to investigate the droplet dynamics after impact on horizontal and inclined solid surface. The two-phase interparticle potential model is employed. The model is found to possess a linear relation between the macroscopic properties ( surface tension σ and contact angle α) and microscopic parameters ( G, G, ). The flow state of the droplet on the surface is analyzed in detail, and the effects of surface characteristic, impact velocity, impact angle, the viscosity and surface tension of the liquid are investigated, respectively. It is shown that the lattice-Bohzmann method can not only track exactly and automatically the interface, but also the simulation results have a good qualitative agreement with ones of the previous experimental and numerical studies.
建立了单液滴撞击平面液膜的物理与数学模型,采用Coupled Level Set and Volume of Fluid方法对这种现象进行了数值模拟,探讨了黏度和表面张力对冠状水花形态的影响.通过分析撞击后液体内部的压力和速度分布,揭示了液滴颈部射流的产生机理,验证了Yarin和Weiss提出的运动间断理论.研究显示,表面张力对冠状水花形态的影响远大于黏度的影响.颈部射流的产生主要是由于撞击后颈部区域局部较大压差造成的,随着撞击过程的继续,压差作用减弱;液膜内流体的径向运动对射流发展成冠状水花具有推动作用.