This paper presents a two-mode digital calibration technique for pipelined analog-to-digital converters (ADC).The proposed calibration eliminates the errors of residual difference voltage induced by capacitor mismatch of pseudorandom(PN) sequence injection capacitors at the ADC initialization,while applies digital background calibration to continuously compensate the interstage gain errors in ADC normal operation.The presented technique not only reduces the complexity of analog circuit by eliminating the implementation of PN sequence with accurate amplitude in analog domain,but also improves the performance of digital background calibration by minimizing the sensitivity of calibration accuracy to sub-ADC errors.The use of opamps with low DC gains in normal operation makes the proposed design more compatible with future nanometer CMOS technology.The prototype of a 12-bit 40-MS/s pipelined ADC with the two-mode digital calibration is implemented in 0.18-μm CMOS process.Adopting a simple telescopic opamp with a DC gain of 58-dB in the first stage,the measured SFDR and SNDR within the first Nyquist zone reach 80-dB and 66-dB,respectively.With the calibration,the maximum integral nonlinearity (INL) of the ADC reduces from 4.75-LSB to 0.65-LSB,while the ADC core consumes 82-mW at 3.3-V power supply.
Transmission lines (T-Lines) are widely used in millimeter wave applications on silicon-based complementary metal-oxide semiconductor (CMOS) technology. Accurate modeling of T-lines to capture the related electrical effects has, therefore, become increasingly important. This paper describes a method to model the capacitance and conductance of T-Lines on CMOS multilayer, Iossy substrates based on conformal mapping, and region subdivision. Tests show that the line parameters (per unit length) obtained by the method are frequency dependent and very accurate. The method is also suitable for parallel multiconductor interconnect modeling for high frequency circuits.
A CMOS radio frequency low noise amplifier with high linearity and low operation voltage of less than 1.0V is presented.In this circuit,an auxiliary MOSFET in the triode region is used to boost the linearity.Simulation shows that this method can boost the input-referred 3rd-order intercept point with much less power dissipation than that of traditional power/linearity tradeoff solution which pays at least 1dB power for 1dB linearity improvement.It is also shown that the size of the common-gate PMOS transistor needs to be optimized to reduce its loaded input impedance so as not to degrade the linearity due to high voltage gain at its source terminal.The simulation is carried out with TSMC 0.18μm RF CMOS technology and SpectreRF.