A novel saline-tolerant bacterium Bacillus circulans WZ-12 was evaluated for its potential to degrade four chlorinated hydrocarbons under saline conditions. CHECl2 was effectively degraded by Bacillus circulans WZ-12 cells in the medium containing NaCl concentrations ranging from 5 g.L^-1 to 10 g-L^-1, and the maximum degradation efficiency (85%) was achieved at NaCl concentration of 10 g.L^-1. Similarly, Bacillus circulans WZ-12 was able to degrade CH2BrCl, C2H4Cl2, and C2H2Cl2 in the presence of 10 g NaCl per liter within 24 h. Cells of Bacillus circulans WZ-12 grown in minimal salt medium contained low levels of glycine betaine (GB), but GB levels were 3- to 5-fold higher in cells grown in media with high salt. Kinetic analysis revealed that biodegradation of the four chlorinated hydrocarbons was concentration dependent and a linear inverse correlation (R2= 0.85-0.94) was observed between the rate of biodegradation (V) and salt concentration from 5 g.L〈 to 60 g.L-1. The growing cells (in minimal salt medium) degraded approximately 50% of the CH2C12 within 24 h, whereas the resting cells (in physiological saline) degraded only 25% of the CH2C12 within 24 h and were inactive after 36 h cultivation. Biodegradation could be repeatedly performed for more than 192 h with more than 50% removal efficiency. Bacillus circulans WZ-12 grows well in an aqueous/oil system, hence, it is effective for the treatment of industriai efflu- ents that contain chlorinated hydrocarbons with high salt concentrations.
The photodegradation of gaseous dichloromethane (DCM) by a vacuum ultraviolet (VUV) light in a spiral reactor was investigated with different reaction media and initial concentrations. Through the combination of direct photolysis, O3 oxidation and HO. oxidation, DCM was ultimately mineralized into inorganic compounds (such as HC1, CO2, H20, etc.) in the air with relative humidity (RH) of 75%-85%. During the photodegradation process, some small organic acids (including formic acid, acetic acid) were also detected and the intermediates were more soluble than DCM, providing a possibility for its combination with subsequent biodegradation. Based on the detected intermediates and the confirmed radicals, a photodegradation pathway of DCM by VUV was proposed. With RH 75%- 80% air as the reaction medium, the DCM removal followed the second-order kinetic model at inlet concentration of 100-1000 mg/m3. Kinetic analysis showed that the reaction media affected the kinetic constants of DCM conversion by a large extent, and RH 80% air could cause a much lower half-life for its conversion. Such results supported the possibility that VUV photodegradation could be used not only for the mineralization of DCM but also as a pretreatment before biodegradation.