Taking the strain tensor, the scalar damage variable, and the damage gradient as the state variables of the Helmholtz free energy, the general expressions of the firstorder gradient damage constitutive equations are derived directly from the basic law of irreversible thermodynamics with the constitutive functional expansion method at the natural state. When the damage variable is equal to zero, the expressions can be simplified to the linear elastic constitutive equations. When the damage gradient vanishes, the expressions can be simplified to the classical damage constitutive equations based on the strain equivalence hypothesis. A one-dimensional problem is presented to indicate that the damage field changes from the non-periodic solutions to the spatial periodic-like solutions with stress increment. The peak value region develops a localization band. The onset mechanism of strain localization is proposed. Damage localization emerges after damage occurs for a short time. The width of the localization band is proportional to the internal characteristic length.