In 2002, Faugere presented the famous F5 algorithm for computing GrSbner basis where two cri- teria, syzygy criterion and rewritten criterion, were proposed to avoid redundant computations. He proved the correctness of the syzygy criterion, but the proof for the correctness of the rewritten criterion was left. Since then, F5 has been studied extensively. Some proofs for the correctness of F5 were proposed, but these proofs are valid only under some extra assumptions. In this paper, we give a proof for the correctness of F5B, an equivalent version of F5 in Buchberger's style. The proof is valid for both homogeneous and non-homogeneous polynomial systems. Since this proof does not depend on the computing order of the S-pairs, any strategy of selecting S-pairs could be used in F5B or F5. Furthermore, we propose a natural and non-incremental variant of F5 where two revised criteria can be used to remove almost all redundant S-pairs.
Rational Univariate Representation (RUR) of zero-dimensional ideals is used to describe the zeros of zero-dimensional ideals and RUR has been studied extensively. In 1999, Roullier proposed an efficient algorithm to compute RUR of zero-dimensional ideals. In this paper, we will present a new algorithm to compute Polynomial Univariate Representation (PUR) of zero-dimensional ideals. The new algorithm is based on some interesting properties of Grobner basis. The new algorithm also provides a method for testing separating elements.
Insa and Pauer presented a basic theory of Grobner basis for differential operators with coefficients in a commutative ring in 1998, and a criterion was proposed to determine if a set of differential operators is a GrSbner basis. In this paper, we will give a new criterion such that Insa and Pauer's criterion could be concluded as a special case and one could compute the Grobner basis more efficiently by this new criterion.